由中科院承担的深紫外固态激光源系列前沿装备日前通过验收,我国变成全球上唯一能制造实用化深紫外全固态激光器的国家。
“这是我国自主研发高精尖仪器的一个成功范例。”9月6日,由中科院承担的国家重大科研装备研制项目——“深紫外固态激光源前沿装备研制项目”通过验收,验收委员会给出了如是评价。
该系列前沿装备中的深紫外非线性光学晶体与器件平台、深紫外全固态激光源平台,以及基于这两个平台研制的8台新型深紫外激光科研装备各项既定目标全面完成,使我国变成全球上唯一能制造实用化深紫外全固态激光器的国家。
中科院院长表示,该项目是中科院相关研究所和科学家在长期科研工作积累的基础上,协同攻关、自主创新取得的重要成果,也是中科院近年来“致力重大创新突破、服务创新驱动发展”的具体体现。
这是一种名为氟硼铍酸钾(KBBF)的晶体。上世纪90年代初,在发现硼酸盐系列非线性光学晶体后,中科院院士陈创天的研究团队经过10余年努力,在国际上首先生长出大尺寸KBBF晶体。
KBBF晶体是目前唯一可直接倍频产生深紫外激光的非线性光学晶体,是在非线性光学晶体研究领域中,继硼酸钡、三硼酸锂晶体后的第三个“中国产”非线性光学晶体。
深紫外非线性光学晶体问世后,如何将其研制成实用化、精密化激光源,则成为一个棘手的问题。
KBBF晶体是层状结构,难以切割,而要做到深紫外倍频又必须切割。为此,陈创天携手激光技术专家、中国工程院院士许祖彦,开始摸索解决办法。
“当时中国大陆还没有这方面的实验装置,我们不得已跑到香港科技大学,借用他们的实验室。”许祖彦回忆说,两个人窝在实验室里,每天工作到深夜一两点,终于搞出了KBBF棱镜耦合器件。
该器件在国际上首次实现了1064nm激光的6倍频输出,将全固态激光波长缩短至177.3nm,首次将深紫外激光技术实用化、精密化,并已获中、日、美专利。
之后两人密切配合,在国际上首次实现KBBF晶体倍频输出深紫外激光,并最终发展出实用化的深紫外固态激光源(DUV-DPL)。
DUV-DPL的研制成功,不仅使得我国激光科学技术研究突破了200nm以内的“深紫外壁垒”,实现了实用化、精密化,还极大推进了我国科研人员在激光科学技术研究领域的继续深入。
许祖彦形容自己的工作是“二传手”,“跟上游讨论晶体该长成什么样,向下游询问要什么样的激光”。
深紫外波段(指波长短于200nm的光波)科研装备目前主要使用同步辐射和气体放电等非相干光源。相对于同步辐射而言,在体积方面,配有KBBF晶体棱镜耦合器件的全固态激光器体积变得很小;在能量分辨率方面,比同步辐射提高5~10倍以上;在光子流密度方面,提高了3~5个量级。
2007年年底,财政部专门设立“深紫外固态激光源前沿装备研制”项目,对搭建深紫外非线性晶体和器件研制平台、深紫外固态激光器研发平台,以及研制8台新型DUV-DPL科学仪器,予以专项支持。陈创天、许祖彦担任项目首席科学家。
“为使仪器保持领先,科研人员一定不断调整技术方案。为此,总体部还设立了一个工程监理部,这在国内的科研项目中很少见。”项目总体部总经理、中科院理化所研究员詹文山说。
这样一来,经常要“推倒重来”。身为“二传手”的许祖彦深有体会:在5年多的时间里,满足了仪器研制人员变更技术方案的多项技术方面的要求,解决了光源与8台仪器对接的工程问题。
如今,这8台科学仪器已经在石墨烯、高温超导、拓扑绝缘体、宽禁带半导体和催化剂等研究中获得了重要结果。
以深紫外激光光发射电子显微镜(PEEM)为例,目前国际上最先进的光发射电子显微镜空间分辨率最高为20nm,而采用全固态激光器后能提高到3.9nm。中科院大连化物所利用这台仪器开展了石墨烯/Ru(0001)表面插层反应原位观测,为石墨烯等光电子材料发展和应用提供了强有力的研究手段。
詹文山透露,目前2mm以下的KBBF晶体已可小批量生产,满足国内市场需求。8台科学仪器中,PEEM正在慢慢地进行产业化尝试。
“晶体—光源—装备—科研—产业化,深紫外固态激光源前沿装备研制项目打造了一条自主创新链,涵盖了从提出原创科学思想到实现应用成果这一完整的科学价值链,为学科交叉面广、跨度大、探索性和工程性很强的原创性重大科研装备创新积累了经验,也为中科院各业务管理单元合理分工、深层次地融合、协力创新提供了典型样本。”评价道。
“这仅仅是深紫外波段仪器应用的开始。”许祖彦透露,项目二期将从物理、化学、材料拓展到信息、资环、生命等领域,开展6台国际领先水平的仪器设施研制工作,继续推动深紫外技术的深度开发。
同时,在一期任务顺利完成基础上,去年中科院理化所联合北京中科科仪等单位,在科技部支持下启动了深紫外仪器设施产业化开发工作,逐步将研制成功的深紫外仪器设施推向市场。